ON NATURAL CAVE MARKINGS

Robert G. Bednarik

Abstract

This paper attempts to bring some light into the question of distinguishing petroglyphs from natural markings in caves, by exploring the range of the latter. Some types of natural markings resemble simple linear rock incisions and other forms of petroglyphs. A variety of natural processes causing cave markings are considered. An evaluation of their characteristics shows that it should be possible to confidently identify the cause of parietal markings in the vast majority of cases.

INTRODUCTION

A perusal of literature on markings in limestone caves soon reveals the difficulties archaeologists have in dealing with these phenomena. It is astounding to observe how some of the more precarious archaeological propositions, for example in Australia, have quickly and quite without opposition advanced to accepted archaeological dogma. The introduction as engraved plaques, of the limestone plates bearing an assortment of crisscrossing lines found in the Devil’s Lair Cave (W.A.) provides an example (Dorch, 1976). Alternative explanations for the lines are not discussed, their identification as artefacts remains unchallenged, and Australia is attributed with a Pleistocene tradition externalised on portable objects with linear, non- iconic incisions which are thought to relate to the finger lines in Koonalda Cave. Indeed, the marked limestone slab Gallus excavated there (Gallus, 1971:PLIX), from just above Floor 6 in Trench III, renders this neat hypothesis somewhat plausible. It, too, has linear markings, and its time of deposition is presumed to be of an order of magnitude similar to the older of the Devil’s Lair specimens. The ‘engraved plaques’ from Trench 9 of Devil’s Lair are of greatly differing ages, about 12,000 and 20,400 years, they consist of ‘extremely friable’ aeolian calcarenite (Dorch, 1976:33) and bear a network of striations on one of the flat faces of each plate. These lines are far from uniform in their depths or widths, varying from pronounced incisions to ‘many extremely fine striations’, too numerous to illustrate. The material is so friable that the ‘very large number of minute striations’ includes many that were made with a fine nylon brush when a specimen was cleaned after excavation! Nevertheless, Dorch discounts natural agencies in the formation of these lines, mainly on the basis that some lines join others without intersecting them (i.e., they change direction).

I have examined striations such as those described by Dorch at numerous archaeological sites in most continents. For instance, I have recovered striated objects from Acheulian and Mousterian layers, and striations can even occur on hard materials such as obsidian (Vértes, 1959:166). The perhaps best examples I have ever seen occur on large numbers of stone slabs in the sandstone shelter Toca do Sítio do Meio, Brazil, but here the excavating archaeologist was careful enough to consult a specialist before making hasty pronouncements in print.

Such markings can be caused by a great variety of mechanical agencies, such as cryoturbation, solifluction, tectonic movement of clastics, simple gravity movement of detritus, animal burrowing, or displacement by humans or animals when, for example, treading on the objects (taphonomy). It seems reasonable to suggest that if a slab of ‘extremely friable’ aeolian calcarenite is in contact with a hard surface, and if there is an amount of sand or grit, particularly quartz grains of varying sizes (Dorch’s plaques contain quartz grains), present between the two contact planes, markings would result if the slab is moved whilst pressure is applied perpendicularly, as would be the case if someone stepped on it, or sat on it. It is self-evident that sand grains caught between two uneven surfaces will produce totally erratic patterns, including sudden changes of direction. Numerous factors would combine to determine the configurations so produced, as well as the depths of incisions: the amount of pressure; the topography of both surfaces; eveness of applied pressure; sizes, shapes and relative hardness of grains; their position relative to the surface relief; direction of movement and so on.

The incised fragment from Koonalda Cave should not be cited in support of a cultural interpretation of the plaques, because anthropic involvement is even more remote in that example. This small limestone slab bears at least three sets of sub-parallel incisions which resemble animal marks, both in configuration and groove detail (e.g., cuneiform commencement). Since animal claw marks are very common in Koonalda Cave I see no compelling reason to ignore the possibility that this slab bears such scratch marks. Moreover, if we wish to remain objective we will also have to concede that a link between the deposition data of this slab and the finger flutings in the Northwest Passage is precarious. We have not even demonstrated that the humanly made tool incisions - which certainly do exist in addition to the actual finger flutings, particularly near the entry to the Squeeze Area - are contemporary with the finger marks at this site. The evidence in numerous other Australian caves would seriously question this (Bednarik, 1990). Conversely, (and contrary to popular belief), the rock art of Koonalda is not securely dated: all published 14C dates are incompatible at one standard deviation, they are not stratigraphically consistent, but the art seems to pre-date the

1 ASF code numbers of sites are not given in this paper because in many cases the sites contain fragile cave art, the only protection of which is in the confidentiality of the cave locations or because they are not listed in the records of the ASF. Also, Aboriginal names were introduced for most of these sites (Bednarik 1990). Many sites mentioned are not in Australia. Many of the less sensitive Australian sites are so well known to speleologists that they need not be identified further.
inundation of the lower part of the passage around 20,000 BP (Bednarik, 1986).

These introductory comments indicate a need of establishing criteria for distinguishing humanly made from natural markings. It is surprisingly common for archaeological investigators to describe natural phenomena, including rock markings, as artefacts, and I have published corrections for such claims from the Americas, Europe, the U.S.S.R. and India (for a recent summary, see Bednarik, 1991). In Australia, some researchers have described Australian cave markings resembling animal scratches as petroglyphs (e.g., Hamilton-Smith et al., 1980; Pretty et al., 1983:21; NPWS, 1983:21-22; Sharpe and Sharpe, 1976; Sharpe, 1982) and one has described finger flutings as having been executed with hand-held animal claws (Hallam, 1971; see correction in Bednarik, 1987/88), which has led to a controversy that awaits clarification. These claims must not be put aside simply because they are in disagreement with the dominant paradigm. All too often, scientific consensus has been wrong in the past, and the claims made in respect to Koonalda, Tantanooola, Cutta Cutta and Kintore Caves need to be examined objectively. Whilst we cannot afford to reject them without a qualified assessment of the entire subject, we equally cannot afford to develop any form of concept regarding the cultural meaning or purport of markings which have not been satisfactorily demonstrated to be cultural. There are far too many such attempts which have been published (e.g., in Australia: Bolger, 1979; Pretty et al., 1983; Reid, 1962; Sharland, 1957; some spectacular overseas examples are Rogers, 1981, corrected by Sieveking, 1982; or Loendorf, 1986, corrected by Bednarik, 1987).

The question of distinguishing humanly made from natural markings is of fundamental importance to the research of early rock art, if the same is to have any scientific relevance. To meet this need I commenced a study of natural cave markings in 1975, which has so far covered hundreds of caves (about 340 in Australia alone), in dozens of countries. The Parietal Markings Project has resulted in several developments, such as the discovery of the densest concentration of cave art in the world (Aslin et al., Bednarik and Bednarik, 1985; Bednarik, 1990); the first direct radiometric dating of rock art in the world (Bednarik, 1984); the evolution of new methods, epistemic frameworks, cultural models and modes of enquiry; and the acquisition of experience in discriminating between natural and artificial markings. It should be said from the outset that there is no short-cut, no golden formula, for recognising either cave petroglyphs, or non-cultural markings. But the present controversy can certainly be resolved. Misinterpretations are usually the result of a lack of familiarity with both types of markings, and with the alteration processes they can be subjected to. Most misapprehensions were by authors who, at the time of presenting their accounts, had only seen one such site, or a few similar sites in a small area. But there is no cave in the world even remotely representative of all phenomena one would need to be familiar with.

My strategy has always been to systematically discount natural agencies before considering human agency, a practice reflected here in my concern with the various natural markings found in limestone caves. Primarily, we are of course concerned with animal claw marks. I will examine specific prominent varieties of them, and the behaviour of animals inside caves. Once we have considered the reasons why animals may mark cave walls we will find it considerably easier to recognise the ensuing marks; many of the distinguishing criteria will become self-evident.

MARKINGS OF NON-VERTEBRATE ORIGIN

Essentially, all secondary markings on rock surfaces are a type of response of lithospheric materials to conditions determined by atmosphere, hydrosphere or biosphere. Thus from a geological point of view, even petroglyphs are a form of weathering, as they are caused by biospheric factors. However, from the cognitive archaeologist’s perspective it would seem most expedient to divide rock markings into those of geomorphological significance (including those caused by the biosphere, i.e., by plants, animals and - unintentionally - by humans); and those consciously fashioned by humans. Until we master this distinction, a task for which archaeologists are certainly not qualified, it seems futile to muse about the artistic merits of the markings, their purport or whatever other ‘cultural’ significance archaeologists may be eager to attribute to such markings.

‘Non-cultural’ rock markings can be broadly divided into those caused by inorganic geological processes, by plant, animal or by human action. Both (1963) reports hundreds of figures at Remarkable Cave, Tasmania, which had earlier been described as petroglyphs, but were attributed by him to roots. Similarly, at Blue Tier, also Tasmania, marks first described as being of Aboriginal origin were found to have been formed, and are still being formed, by a combined action of plant abrasion and acid leaching’ (Sims, 1977:432). Such marks are fairly common outside caves, and students of rock art would be well advised to familiarise themselves with these phenomena. Many of the deep grooves found in the sandstone regions of Sydney and Cape York peninsula are caused by tree roots and have been described as axe grinding grooves or petroglyphs by archaeologists. They occur especially at the edge of rock exposures, where a tree once hugged the rock for support. As it swayed in the wind, minute movements combined with sand and soil acting as abrasive produced grooves of up to 10 cm depth over the tree’s life time.

Such marks are unlikely to occur in caves, but a second type is very likely to be found there. I have described the effects of symbiotic mycorrhiza on archaeological objects consisting of calcium carbonate (refuting once again archaeological claims of early art: in India I rejected the markings on 44 ostrich egg shell fragments of the Late Pleistocene as being man-made, finding the same patterns on numerous Siberian Palaeolithic statuettes [Bednarik, 1991]), and it is obvious that similar markings are likely to be found on limestone. In many Australian caves, tree roots can be found 20 m and more below the surface (e.g., in Lake Cave, W.A.) and the ability of roots to produce grooves in limestone has been established (Wall and Wilford 1966). In contrast to the first type of root markings, which is essentially the result of mechanical action, the root marks likely to occur in limestone caves were not produced by the roots themselves, but by the chemical reaction between the respiratory carbon dioxide (and possibly organic acids) of the symbiotic micro-organisms present in root systems. The resultant linear marks are often well rounded in section, and if they
are of the appropriate size they may well resemble finger lines. However, they are easy to recognise by the experienced observer.

Geomorphological action appears to result only rarely in marks within caves that are likely to be mistaken for petroglyphs. Besides the striations caused by some form of sediment transport, which I have touched upon in my introduction, and the abrasions or incisions talus material often produces on cave walls (a good example is depicted in Maynard and Edwards, 1971:Pl.32), there are two processes in particular that need to be mentioned. The first is *Karron* formation, which affects sloping surfaces of carbonate rock (limestone, dolomite). Where these are exposed to non-vadose atmospheric water flowing over rock, enriched with biological CO₂ from soil microorganisms, *Rillenkarron* may form. These linear, parallel flutings can be of very regular spacing. As they deepen, they mature to become *Rinnenkarron* which can develop to depths exceeding 1 m. These karst phenomena are quite rare in Australia, and apparently lacking in the Nullarbor region (Jennings, 1963:60), where *Kamenitsa* and smaller pitting can nevertheless be observed (poorly developed *Karron* are widespread, however). I have found *Rillenkarron* elsewhere in Australia, including in Orchestra Shell Cave (W.A.), a site with finger flutings. In the western part of the cave as known prior to 1984 (Bednarik, 1987/88), rainwater has access to the cave wall and has shaped parallel grooves of 3-5 mm depth, as well as other solution phenomena. A prominent panel of *Karron* occurs 25 m west of the entrance to Piccaninny Cave (S.A.), which looks deceptively like a set of about 40 pecked and abraded, parallel lines.

Karron formation in caves is usually limited to locations that are accessible to water other than seepage through overlying rock. Water that has percolated through the closed system of the rock strata conveys bicarbonate up to equilibrium solubility, which is of course a function not only of CO₂ availability or pH, but also of pressure. This means that, even when such a solution is not saturated, its ability to mobilise any further cations upon emergence in the cave space is determined by deducting those already present from the solvent potential in the atmospheric conditions. In practice the result is normally negative, that is, there is a surplus of solute, and the vadose water is therefore unable to effect any surface solution. Erosion within caves is largely phreatic, involving substantial bodies of water and often turbulence and flow which increase solvent potential dramatically. Thus the admissibility of *Karron* formation as a possible interpretation of wall markings can be assessed by speleo-genetic study.

Another geomorphological process producing petroglyph-like markings is a form of selective mass exfoliation (Thornbury, 1954:40). Most types of rock experience near-surface leaching which often results in the formation of a cutaneous weathering zone. It may be protected against mechanical erosion by case hardening (Bednarik, 1979:24). Other factors may contribute to establishing a subcutaneous zone that is less mechanically resistant than the surface layer: varying expansion coefficients and absorption characteristics of diurnal oscillations, anisotropic properties of component minerals, prolonged retention of moisture and associated increased incidence of chemical reactions, deposition of migratory salts and others. Once exfoliation is introduced, i.e., once the case hardening has been punctured, weathering of both surface layers proceeds comparatively unimpeded. If it occurs in selective patterns, the visual result may closely resemble pecked glyphs. Groups of pits are very common, and intricate designs, lines and curvilinear forms may occur. In a sufficiently large sample, apparently figurative motifs may even be discerned. However, by surveying the results of weathering processes active in the area, the natural character of such marks can usually be established. In particular, weathering is not active in deep caves, and can at best affect entrance areas, or rock shelters.

Sandstones are frequently subjected to the described processes, and in addition the laminations often inherent to these rocks also give rise to selective erosion resulting in quite regular surface marks. A classical example is provided by a set of concentric arcs I found in a shelter near Signal Peak, Grampians, which not only appears anthropic, but also resembles closely the 'style' of the archaic petroglyphs common especially in south-eastern Australia. Yet I attribute it to natural processes.

The difficulties experienced in determining the origin of such marks are well illustrated by Sims' (1977) summary of the known petroglyph sites in Tasmania: of 20 locations claimed to have art, Sims could only confirm 12, the authenticity of the others being doubtful as unconfirmed, or from natural phenomena.

'Geological' rock markings can also be produced by linear solution along very thin lamellae of intruded mineral, bedding planes or along minute joints, forming grooves that often appear artificial, particularly if they cross each other as it is common in Buchan limestone (Vic.). Rare instances of this process also occur, for example, in the south-east of South Australia (see Plate 1) and at Koonalda Cave. Normally they

Plate 1. Parallel solution grooves along inherent faults in Tertiary limestone, outside Koongine Cave, Kongorong S.A. (Scales in all plates are in centimetres and inches)
can easily be recognised as being natural markings, but there have been instances of controversies here too (e.g., Rogers, 1981; cf. Sieveking, 1982).

Finally, rock within caves may fracture along small solution tubes of about 20-30 mm diameter, causing conspicuous grooves. This is phenomenon of which I have observed only few instances in Australia (see Plate 2; it is also found in Koonalda Cave).

In summary, rock markings of geological significance can be identified, in the great majority of cases, by an assiduous investigation of the processes that may conceivably have caused them, or that are potential contributing factors; and by an objective evaluation of their products. Archaeologists must restrain their desire to assign archaeological purport of any form to markings that may be fortuitous or ‘geological’ in nature.

ANIMAL MARKINGS IN CAVES

In contrast, to distinguish animal marks from parietal petroglyphs is often a more difficult task. In view of the widespread difficulties with this subject I shall discuss it in some depth. Animal marks are not the result of a conscious activity, although they can be purposeful and intentional (much to the surprise of naive archaeologists who conduct debates about ‘symbolism’ and marking behaviour). Like geological markings, they can thus be deemed to conform to some principles permitting statistical assessment with an adequate degree of objectivity. The difficulties of which to be conscious resemble those surrounding other archaeological controversies, such as the ones dealing with the perennial ‘naturefacts’ vs artefacts debates in stone tool typology, and the taphonomy vs worked bone debates.

In my view the most numerous parietal animal marks are those made by bats (Plate 3). Two varieties can be distinguished: scratches by the airborne mammals, caused by wings and perhaps by the digital claws; and the marks caused by roosting or landing specimens. Both forms necessitate soft surfaces, usually cutaneous travertine or the autochthonous mode of Montmilch.2

King-Webster and Kenny (1958) have suggested ‘bat erosion’ to be responsible for dome or bell-shaped ceiling pockets (probably Kolke) in a cave in Trinidad. Their view was quickly challenged by Hooper (1958) who correctly identified the phreatic origin of such typical cave phenomena, and who also observed claw marks of bats on soft ceiling deposits in Devonian caves. I have studied numerous Caribbean caves and found no evidence for the continuing claims of local researchers supporting the view of King-Webster and Kenny.

The filigree lattices of innumerable lines produced by airborne bats are common throughout the world. The fine scratches can be straight or curved, and run in any direction. The characteristics of these marks are:

- They are practically absent in all but large recesses of a cave wall. Even slight saliences, such as the ridges in Montmilch finger flutings, are sufficient to attract numerous fine and

2 I use the scientific term Montmilch (Schmid, 1958) here to refer to what is colloquially known as moonmilk, a translation of the German Mondmilch. Other central European names are Bergmilch, Galmei and Nix, the latter referring to the use of the speleothem as ophthalmic analgesic, for which it was mined in Europe during the Middle Ages.
shallow incisions, whereas the depressions in the finger lines remain unmarked. Where this marking process is intensive the ridges may be all but worn away, and in such instances the finger lines become gradually indistinguishable.

- The markings caused by airborne bats are concentrated in well defined spatial zones, determined perhaps by the general configuration of the convacuational space (this is the accessible air space, which is part of the evacuational space - the total cavity volume, including solid and liquid cave deposits contained in it), and perhaps by the preferred traffic routes therein. While pronounced in southern France, this may not be as distinctive in all regions as it is obviously related to variables such as the behaviour of diverse species and the morphologies of caves.

The second type of bat marking is often most inconspicuous. For smaller species, a maze of very fine, short incisions may be detected on low ceiling portions, as well as within small avenos and Kolke. This may be caused by the claws of bats frequenting favoured roosting sites. I have observed undercutting around minor projections of hardened speleothem that may indicate a considerable duration for the process. In Cutta Cutta Cave (N.T.), many of the sub-parallel sets of incisions reported by Walsh (1964) were produced by large bats. Walsh refrains from attributing the markings (at this site and at nearby Kintore Cave, which I have not visited) to any cause, but archaeologists were quick to relate these marks to those of Orchestra Shell Cave (W.A.), apparently because they occur on ceilings in both instances (Mulvaney, 1975:279).

Other flying species enter caves and produce markings on soft deposits. Australian caves are commonly inhabited by the welcome swallow (Hirundo neoxena) and fairy martin (Ceropsis ariel), both of which construct nests of mud pellets on the walls and ceilings. Nests of the former species in fact occur at several of the Australian sites of Montnich finger flutings: at Orchestra Shell, Mandurah, Kooring, Kripton, Kra, Malangine and Koongine Caves, among others. Small wall areas adjacent to swallow nests are densely covered with vertical grooves (Plate 4), produced by the primaries, claws and perhaps mandibles of the airborne cave dwellers. Such lines are generally faint, straight, shallow and short, and they lack a cuneiform element which is often the hallmark of mammalian claw marks.

Owls preying on bats penetrate deeply into cave systems (Bachofen-Echt, 1931:711) in pursuit of their quarry, and could conceivably cause sporadic similar marks. Musellidae also forage many hundreds of metres into caves in their hunt for Chiroptera. Both the tracks and claw marks of martens occur abundantly in the Drachenhöhle, Austria, up to 500 m from the entrance.

Numerous other species enter caves, for a variety of reasons, and most are capable of marking walls. Markings are not limited to those shaped with claws or wings; walls and ceilings may be marked very effectively by the bodies (the most impressive evidence being the Bärenschliffe in European caves), even by horns tasks (elephants in Africa) or antlers, of animals. In Australia, erratic deep lines on ceilings have been suggested to have been caused by bovine horns, and hair of domesticated species was found embedded in the soft surface deposit. In Eurasia, with its large megafaunal Pleistocene animal population, animal marks of various types are very common.

The best-studied type of animal markings in caves are of course those of the cave bear (Ursus spelaeus), and they can often be found in direct association with Upper Palaeolithic art in western Europe. On occasion, claw marks of cave bears have been interpreted as petroglyphs. For instance, the famous engraving of a human hand on the upper left hand end of the art panel in Bara-Bejite (Dordogne, France), which has been called the oldest work of art (Glory, 1955:PI.2), is almost certainly a cave bear mark. Wétęs (1965) reports a small panel of deep scratch marks from the Hillebrandt Jen Cave (NE-Bük Mountains, Hungary) that resemble cave bear claw marks. He identifies them as humanly made on the basis of their oblique inclination, since the bear scratches he has seen on photographs are of a different orientation (presumably perpendicular). The site contains cave bear remains (Vértess, 1959), and the claw marks of the cave bear can in fact be orientated at any angle, including horizontal, and they can also be found on cave ceilings (Bednarik in prep.).

An Australian archaeologist observed that many individual and groupscratches occur among Upper Palaeolithic art, and can be seen in many of the published illustrations, ‘where their occurrence passes without comment’ (Hallam, 1971:101). She speculates what the apparent 1+3+1 spacing could mean, which she sees as resembling that of a few Australian sites where she considers an animal claw fastened to the end of a stick may have been used by humans. Yet the answer is simple: it did not occur to the French rock art specialists to make special mention of the many cave bear marks under and over French cave art, because their nature is well known to them. For instance, they extend virtually for kilometres along the walls of Rouffignac, and they are common in many major caves, from the Pyrenees to the Ural.

My detailed study of cave bear scratches in over 50 European caves resulted in some surprising proposals: the large and no doubt fierce bears appear to have been snared in their hibernation haunts by Palaeolithic hunters; and among the 11 different types of claw marks I distinguish, one appears to be intentional and ‘semantic’ - even though it could not be seen in the dark (Bednarik, in prep.). Cave bear claw marks can be found well over a kilometre into a mountain, they are frequent around hibernation pits, and during the cryoparotic periods (the stadal peaks) of the Pleistocene, the animals sought refuge in the warmer air trapped in rising passages.

Whilst the cave bear marks of Europe have been the subject of some previous research (notably Bachofen-Echt, 1931), other parietal animal markings have attracted almost no attention. I have been able to consider the opinions and findings of earlier workers in attempting to explain the significance of the bear marks, but in the case of other scratches we would benefit from initially posing the question: why should animals have scratched cave walls at all?

BEHAVIOUR OF NON-HUMAN ANIMALS IN CAVES

I suggest that we need to investigate aspects of animal behaviour within caves. Two basic types of caves are to be considered: those permitting ready access and egress (predominantly horizontal), and those acting as natural traps (including at least one shaft that is difficult or impossible to negotiate). One would expect the animal markings found in the two cave types to differ significantly in arrangement, location, direction,
species representation, depth, density, distribution and so forth. This is the case to a point, but the distinction is not quite so clearcut. The ability of any one species to leave a cave is not only a function of accessibility, but also of the species’ mobility, notably its climbing ability: whilst one species may find it impossible to escape from a shaft, another might enter and leave the same shaft habitually. Moreover, accessibility of a cave is by no means unchanging through time - in fact it rarely is. It may be altered quite dramatically, and as it is modified, the population characteristics of the accumulating wall markings change. These concepts are well exemplified in South Australian caves, which possess some of the greatest concentrations of cave claw markings in the world.

If the objective is to recognise the animal origin of ambiguous parietal markings, that is, to quantify the characteristics of animal marks for the purpose of distinguishing marks probably made by humans, it is inevitable that we should ask: do animals have ‘motives’ to produce such marks? Do they behave in such a way only whilst in caves? Do different species have different reasons for incising rock surfaces?

The paucity of publications on this subject could be the result of various factors: speleologists probably felt little inclination to concern themselves in any detail with the markings they often encountered on their subterranean forays; animal behaviourists may have had little dialogue with the former; and prehistorians or students of parietal art may not have considered themselves competent enough for a qualified view on this subject. Most people examining animal marks in caves would be deterred by the apparent scarcity of known sites of such phenomena, and they would probably realise that they are dealing with a very small, unrepresentative sample.

A basic tenet of behaviourism stresses the role of the environment as a determinant of both human and animal behaviour. It goes without saying that for a species not accustomed to a cave environment there can hardly exist more aberrant surroundings than those it will encounter within a cave. Yet it is quite certain that non-troglophiles can adjust to a cave environment, and I believe that they may tolerate very high danger levels in situations of stress.

To facilitate the present discussion we must distinguish three categories of animals: troglobites, trogloxenes and accidental trogloxenes. The first group consists almost entirely of non-vertebrates, sometimes lacks pigmentation and vision, and has adapted to a life without light and diurnal cycles, in conditions of constantly high air humidity. Owing to their small sizes, they are unable to produce any significant parietal markings, especially claw marks (Richards, 1962).

The distinction between the latter two groups is really a matter of degree and it should be noted that more than three groups can be distinguished, depending on the criteria: biospeleologists would identify five groups for instance. The trogloxenes enter caves habitually, or remain in them for long periods, but still rely for their nutrient supply on outside sources. They are able to negotiate cave passages totally devoid of light, and may penetrate kilometres into a cave system. Obviously they must possess a sensory system capable of guiding them: ultrasonic echo-location, a particularly acute sense of smell, a keen topographic memory, or a system of spatial orientation we cannot know about. Accidental trogloxenes, however, lack these, and like vegetation, they will only proceed into a subterranean environment as far as daylight penetrates. But if pursued by a predator, if desperate for water, or if blinded they might enter the dark zone.

How would a nontrogloxene react if it has escaped major injury, but finds itself trapped in a cave? Such behaviour has not been observed effectively, but some evidence can be secured by studying the remains of perished animals. Throughout the world there are numerous such animal traps - prime targets of palaeontological research. Often the victims remained mobile after their plunge, and died eventually of thirst or starvation. In the huge shaft cave Buraco doSansao, Brazil, upon reaching the floor following several aborted attempts by others, I discovered a surface deposit of megafaunal bones covered entirely with a thick glistening calcite skin - an incredible sight (Bednarik, 1989). Thou-

Figure 1. Gläserkogelschacht
a cone of firm (frozen snow). The large hall they found themselves in has only one other exit: a narrow squeeze, just wide enough to allow an adult person to pass. It leads abruptly to a lower shaft (Figure 1).

In 1962 the Vienna Museum of Natural Sciences commissioned an expedition to recover a large sample of ossal material from the shaft. With a group of speleologists I salvaged about 350 kg of bone remains of a Late Pleistocene megafauna. I also reached the pond at the base of the lower shaft, and found, embedded in the fine clay surface around it, a number of small articulated skeletons, as well as the tracks of these animals. Not only had they reached this lowest level and remained mobile, their tracks and long bones indicated no impairment from broken limbs.

The remains of the large mammals in the upper chamber had been transported by the downward movement of the talus slope, and possessed many 'dry' fractures. The absence of small species is conspicuous here, the remains being largely those of Bos primigenius, Bison priscus, Alces alces and Cervus elaphus. In the lower hall, only two specimens were examined, Lepus sp. and Mustela erminea.

Obviously the configuration of the cavities (see Figure 1) has affected a sorting of the animal remains according to the size of species.

This scenario leaves us with two potential explanations: the second fall of the small individuals was again purely accidental; or the hapless creatures slid into the total darkness in an act of final desperation. The first possibility requires that all these individuals slipped accidentally, despite the nasty experience they had gone through some days earlier, thus the second - voluntary entry into the lower shaft - is the most likely explanation.

The observations at the Gläserkogelgacht suggest that an animal faced with the prospect of indefinite confinement in a cave, subjected to starvation and thirst, does not necessarily resign itself to an inevitable fate. Behavioural patterns permit at least some non-trogloxenes to seek the uncertain prospects offered by a totally dark abyss: instant death, or access to water, or perhaps even a very slim hope of reaching passages leading back to the surface.

CAUSES AND TYPES OF ANIMAL SCRATCH MARKS IN CAVES

Traces of desperate escape attempts can be found in most caves with vertical entrances where the walls are soft enough to render claw marks discernible. The natural trap sites of Australia contain the remains of millions of animals which have perished in them (consider for example the caves at Narakoorie, e.g., Wombat Cave; McEachern’s Cave [Wakefield, 1967]; Amphitheatre Cave [Bednariik, 1968; Robertson Cave]. I have observed evidence of almost unbelievable climbing feats in numerous caves. At Princess Margaret Rose Cave, one of many marked caves which were inaccessible to prehistoric
people, claw scratches occur on vertical walls at up to 5.5 m from the present floor. Naturally, this circumstance could be due to a floor subsidence or sediment removal by water action, but similar markings occur in literally hundreds of other caves. They are present at even greater heights in Robertson Cave (Plate 5), and they are found in many narrow and often deep shafts that were quite inaccessible to human beings lacking sophisticated equipment. For example, Gran Gran South Cave consists of an 18 m-deep shaft. Animal claw marks can be found at most levels, but they are particularly dense wherever upward progress was impeded - especially in an aven about 10 m from the floor. The numerous distinct claw scratches on the perfectly flat, horizontal underside of a block measuring about 1 m across, located some 9 m above the floor, bear witness to an incredible climbing ability (Plate 6). They contrast starkly with the pronouncement by some Australian writers on an animal’s inability to mark flat ceilings it cannot reach from a floor (Walsh, 1964; Mulvaney, 1975:279).

Just below the mouth of Mount Graham Cave, a possum has made its home in the vertical cave wall, watching warily as we explored the shaft. To enter and leave its burrow it has each time to jump over the sheer chasm exceeding 25 m in depth, and in doing so can ill-afford to miss its precarious mark. The shaft flares out towards the bottom, and markings occur up the overhanging walls.

The three entry shafts into Grave Site Gran Gran Cave have been densely marked by animal claws. Locally the rock has been rubbed so many times by the bodies of climbing individuals that it is distinctly polished. These vertical walls appear to be scaled quite routinely, and the climbing ability evidenced in considerably less accessible caves suggests that certain species should not have experienced difficulties in entering and leaving this cave at will, possibly just to obtain drinking water. Other creatures were not as fortunate, as the tens of thousands of often deeply furrowed grooves near the floor level suggest.

Cave shaft openings are not the only animal traps, solution tubes can also open to the surface, and small animals sliding into them would find themselves in a gallery developed horizontally. Sink holes may act as traps if the walls are sufficiently hard to climb. When part of a cave system collapses, a cave that had served as a trap may become readily accessible. It is then difficult to determine whether the claw marks are related to its ‘closed’ phase, or to the period since the present entrance was formed (e.g., Hereford’s Stream). Then again, some caverns were once entered by megafaunal species that could not possibly fit through the present entry openings (e.g., Wombat, Fowl Yard, Grave Site Gran Gran and Yaranda Caves). Obviously, large entrances existed during earlier periods but were at some stage blocked, usually by tectonic adjustment (using the term in its correct sense: tectonic and seismic are not synonymous).

Both troglobiones and non-troglobiones can find themselves in the predicament of having fallen into a cave, or of being confined by such events as inundation, rockfalls, earthslides, or - especially in Pleistocene Europe - avalanches or snowdrifts. Some of the claw marks illustrate the extremes some individuals went to in their quest for self-preservation. At the base of the more than 30 m-high, 20 m overhanging, imposing walls of the lower hall in Robertson Cave occur puny marks of small rodents or marsupials (Plate 7), some measuring only a few millimetres over four digits: a vivid demonstration of the overwhelming futility of most such attempts, yet at the same time a telling testimony of the compelling urge to survive.

Despite the relative futility of these endeavours they were
Climbing marks are most common above ledges, along cracks, edges of blocks and chockstones, and generally at locations that either provide some hold or that obstruct upward progress (Plates 8-10). The maximum reach of individuals involved can often be determined with accuracy, especially where dense concentrations radiate from a position where the animals reaching out were clearly perched. If an arc of such marks is centred on a small ledge measuring only a few centimetres, the distance of the marks from that ledge delimit the range of the animal concerned. I have found these to be quite consistent in many instances. At the same time, claw spacing in individual sets also gives a fair idea of the size of a specimen. Both indices frequently identify possums as the most likely makers of this class of scratches. As these incredibly agile marsupials are able to scale vertical brick and concrete walls seemingly effortlessly with their outsized claws (own observation), most cave walls would not present serious impediments to them. Factors to be taken into consideration when examining such markings are climbing techniques, and degree of confidence in moving about in total darkness, both of which are attributes differing considerably in the various species identified among the remains studied in caves across southern Australia. For instance, I have compared the climbing technique of *Phascolarctos cinereus* and *Trichosurus vulpecula*. If trapped subterranean, the former would conceivably produce mostly short, oblique marks at salient features such as columns and projections, sloping down near the apex of these; whilst the latter would leave long, predominantly vertical sets where it slipped, and shorter, variously oriented sets where the rock surface was surveyed. Conversely, nocturnal species are more likely to tumble into a cave shaft, particularly if their mode of movement on the ground is rather awkward - as is the case with the two species just mentioned. A perfectly preserved skeleton of a Brush-tail possum lies embedded in the flowstone floor of Augusta Jewel Cave (W.A.), a cave from which escape does not seem possible, and there are similarly fossilised remains of a kangaroo rat in the floor of the Shades of Death Cave (Vic.).

Gouged symmetrical marks appear to relate to species unable to scale the walls. Typically, they occur on two surfaces forming a vertical salience, such as a ridge or a corner. Dense concentrations of deeply furrowed grooves cannot be separated into individual sets. The lines are arranged almost horizontally near the floor but their angle of inclination increases with height until, at the animal’s maximum reach of up to 1.5-1.8 m, they are nearly vertical. The symmetrical manner in which the grooves converge towards the salience (Plates 11, 12) appears to indicate that the front legs were both used simultaneously by the animals, standing upright as they helplessly clawed the wall. Macropods and especially wombats are the most likely cause of these deeply grooved patterns.
- **Megafaunal marks.** Owing to their size, spacing, and in some cases location, a number of often particularly deep scratch marks appear to have been produced by now extinct, large species. We know very little about the habitat and behaviour of *Macropus titan*, the *Protemnodon* species, or *Diprotodontidae*, all of which had a reach exceeding that of a human. The largest of the *Macropodidae*, *Procoptodon*, is attributed with extremely long arms capable of pulling down tree branches. It is in my view the most probable cause of several groups of marks in Mt Gambier caves. Because of corrosion, megafaunal marks always appear very ancient. Their spacings between claws, of 35 mm and more, contrast with a range of 11-23 mm for adjacent, much more recent and lower sets (where related to stable rock floors) that might be of modern species. *Thylacoleo carnifex* had very large claws, and its postulated myelophagous (bone crushing) diet is suggestive of Europe’s *Crocuta crocuta spelaea*, a well-known trogloxene. A few scratches on a ceiling in Robertson Cave have an average claw spacing of about 50 mm (Plate 13). This exceeds the mean spacing of cave bear marks (about 34 mm). As far as I am aware, of the known Australian Upper Pleistocene species, only the marsupial lion could have caused these marks. Extensive megafaunal markings occur at many other Mt Gambier sites, such as Grave Site Gran Gran Cave (at lowest level, just above water table), Wombat Cave (only in eastern portion), Nung-kol Cave, Yaranda Cave etc. They are often partly covered by floor deposits (Plate 14).
of wall markings occurs at the threshold of natural light, in caves permitting otherwise unimpeded movement, for instance in Dickson's Cave (Buchan, Vic.) and Koonalda Cave. In my view they are mostly of non-trogloxenes which are unable to cope with an environment they are driven into by circumstances, such as the promise of water as indicated by increasing air humidity (Plates 15-17).

The Tantanoola Cave markings are among those suggested to be humanly made (Plate 18). None of the line arrangements differ appreciably from those studied at about 200 sites of the general region. Complexity of the 'designs' is in fact quite moderate in comparison to that at some other sites where a human involvement is precluded, but claw spacing is above the averages of other sites: a sample of 17 identifiable sets provided a mean line spacing of 18.8 mm. It is to be noted that, no limestone cave of more than 10-15 m length is free of animal markings, anywhere in the world, with the probable exception of a few Antarctic caves.

The scratch markings in Koonalda Cave commence as soon as the threshold of discernible light is passed. On the walls they generally reach to about 1.5 m height, which indicates that those visible are more recent than the huge roof falls that have taken place here. Many of the floor boulders are also marked by sets of incisions (Sharpe and Sharpe, 1976), and it should be noted that they, and the wall scratches, refer to the most recent level of the talus. Since the finger flutings in the same passage (Gallus, 1968) precede the most recent rockfalls, the marked clastics cannot be chronologically compatible with them. If the boulder scratches were the result of human activity, it would have to be attributed to a different occupation than that which resulted in the rock art. However, the boulder markings include no configurations or groove characteristics demanding a human origin. They closely resemble marks I identify as mammalian elsewhere, and I would in fact find it remarkable if, of all the suitably endowed caves, Koonalda Cave would be the only one lacking animal scratch marks - particularly as it is such an outstanding animal trap, with its enormous sinkhole entrance. I believe that a human origin should only be postulated if an animal origin can be ruled out with confidence. In my view, this has not been proven here, nor has it been attempted to refute an attribution of the marks to animals. No researcher who is familiar with cave wall markings as a general phenomenon (i.e., who has studied them thoroughly in more than 100 caves!) would support the proposal. Moreover, the concept implicit in describing the
four genera of Dasyuridae from R.V.S. Wright's excavation, Peramelidae, and two Macropodidae, including possibly Macropus rufus. Gallus (1977:379, P1s 10-12) reports a variety of further kangaroo remains from among the talus boulders, including a row of vertebrae, apparently articulated.

CONCLUSION

Two more, very common types of cave markings need to be mentioned: the marks left by speleologists, and those of human visitors of recent times generally. Speleologist's marks are particularly evident in narrow or low passages, commonly occurring on ceilings, in the form of long single grooves, abrasions, finger marks and so forth. They are easy to recognise, through location, direction and freshness. Marks left intentionally by recent visitors are collectively known as graffiti. They are of significance to the rock art student for several reasons. Since they are frequently dated, carved inscriptions or those made with soot or pencil may provide invaluable information about weathering and patination rates, formation rates of Montmorillonite and other speleothems, recent changes in accessibility and more. They also provide potential data for sociocultural analysis and various other approaches (e.g. Morwood and Kaiser-Glass, 1991).

It is clear from this paper that the natural cave markings most likely to be mistaken for 'prehistoric' petroglyphs are animal scratches. To assist in assessing them, a tentative taxonomic model describing them in a systematic manner may be useful. I submit that the status of an animal-made mark is determined by three co-ordinates: species, vehicle (i.e., the part of the body presumed to have caused the mark), and purpose ('motives' or reasons for making the mark). The essential characteristics of each animal mark are determined only by these three factors. Others such as softness of the medium or subsequent speleothem growth, may influence the appearance of a mark greatly, but not its essential characteristics.

Presumably, there are many reasons why animals have marked parietal surfaces. Their 'motives' could include the following:

- Attempts to escape from the cave, either because the entrance has been blocked, or because it cannot be reached.
- Territorial marking behaviour; obviously only relevant to troglodytes.
- Fighting among individuals could conceivably result in damage to the walls of a confined space.
- Struggles of animals caught in snare or under rock falls has been suggested to explain certain unusual marks, especially deep horizontal scratches.
- Mating excitement or behaviour seems a plausible explanation for some marks.
- An animal pursued by a predator, including a human, may withdraw into deeper parts of a cave and, acting under stress, claw at the wall to find a way to escape.
Perhaps great pain of ill or injured animals, which may seek refuge in caves or have fallen into a shaft, induces some species to claw nearby rocks.

Certain troglodyne species may seek to penetrate deeper into a cave, in an exploratory fashion. They also clear narrow passages, and in the process are likely to mark rock surfaces.

Some troglodynes may scratch cave walls in a more or less playful manner. Adolescent animal behaviour could be considered here.

Conceivably, some of the claw markings could be interpreted as claw sharpening marks, but for the great majority of such marks this explanation is not plausible.

Finally, several types of animal markings are simply incidental to 'normal', everyday behaviour, and these can be extremely common: the marks of flying species, the polishing of rock by countless bodies rubbing against them, the scratches of the horns of ungulates in cave entrances, or the marks caused when constructing burrows all fall into this category.

Tentative species identification from claw marks is often possible, and occasionally definite identification, by a detailed assessment of factors such as: line spacing in individual sets; configuration of claws at point of commencement; height (where the former floor level can be reliably inferred); inferences regarding mobility of fore leg and shoulder; indications of body size (by spatial restrictions); and impressions of paws on soft or soot-covered surfaces.

The identification of animal scratch marks would be simplified if the three-dimensional model offered here for discussion and further development (Figure 2) were improved from further input as the range of identifiable markings grows. If the model were perfect and complete (which it is of course not even remotely) it would be possible to determine with it one of the factors (or the range eligible for consideration) by ascertaining the two other factors. Unfortunately, this is often not practicable, but since only a limited number of interpretations are usually tenable for the co-ordinates 'Species' and 'Purpose' (limited by aspects of size, relative location, geographic location etc.), and since 'Vehicle' can often be established reliably in any case, one would hope that by checking all possible combinations of the potentially acceptable individual co-ordinates, only a small number of these combinations would remain plausible.

ACKNOWLEDGMENTS

I wish to record my gratitude to Dr Alexander Gallus, for his help with the Hungarian text of Vörös, 1965; to Dr Kevin J. Sharpe, for his improvements of my text; and to an anonymous referee for several constructive suggestions. The support of the principal researchers of the Parietal Markings Project was crucial for this work, and I express my gratitude to Elfriede Bednarik, Geoffrey Aslin and Peter Scott.

Figure 2. A taxonomy of parietal markings using their three principal characteristics as the coordinates of a three-dimensional model.

Plate 17. Boulder completely covered by animal scratches, Grave Site Gran Gran Cave.
REFERENCES

ASLIN, G.D., BEDNARIK, E.K. and BEDNARIK, R.G. 1985
The Parietal Markings Project - a progress report. *Rock
Art Research* 2: 71-74.

BACHOFEN-ECHT, A. 1931 Fährten und andere
Drachenhöhle bei Mixnitz*. Speiölogeiscie Monographien,
Volumes 7-9, Vienna: 711-718.

BEDNARIK, R.G. 1968 Die Höhlen von Buchan (Victoria,

BEDNARIK, R.G. 1979 The potential of rock patination analysis in Australian archaeology - part 1. *The Artefact* 4:
34-38.

BEDNARIK, R.G. 1984 Die Bedeutung der paläolithischen

BEDNARIK, R.G. in prep. Rock markings of the cave bear.

DORTCH, C.E. 1976 Two engraved stone plaques of Late Pleistocene age from Devil’s Lair, Western Australia. *Archaeology and Physical Anthropology in Oceania* 11: 32-44.

Address for correspondence:
International Federation of Rock Art Organisations (IFRAO), P.O. Box 216, Caulfield South, 3162, Australia.